

TECHNOLOGY OF EXTRACTION OF IRON OXIDE FROM IRON-CONTAINING WASTE Aripova Mastura Xikmatovna Shamatov Sirojiddin Abdujalilov Muhamadjonova Mohina Nodirjon qizi https://doi.org/10.5281/zenodo.6590853

ABSTRACT: The article describes the scheme of obtaining pyrite from iron ore of a copper concentrator, Fe (OH)₃ and Fe₂O₃ by heating, production methods, cost-effective products and areas of application.

Key words: pyrite, sodium hydroxide, iron(II) hydroxide, iron (III)oxide, inceniration.

Introduction: The content of this work is that copper concentrators today contain many compounds in the iron-containing wastes generated during flotation, and their separation can increase economic efficiency. There is a growing demand for iron and its compounds in Uzbekistan: sulfate compounds of iron, pigments containing iron, iron powder. however, if this process is applied on a production scale, it will be possible to create more jobs.

World prices for iron and its compounds today Iron

Iron compaunds	Quantity,t	PriceFe
Fe	1	94.97\$
FeSO ₄	1	70-90\$
FeSO ₄ *7H ₂ O	1	60-90\$
Fe ₂ (SO ₄) ₃	1	90-199\$
FeS2	1	300\$

World iron production

	Russia,(t)	America,(t)	Uzbekistan,(t)
Fe	95 mln.	46.9 mln.	450-500 thousand

Experiment section. For the experiment, 3 samples of man-made iron-containing (35-45%) man-made waste from the copper concentrator-2 plant of JSC "Almalyk MMC" were prepared on an analytical balance of 120 g.

YOSH TADQIQOTCHI JURNALI

 $FeS_2 + 2NaOH = Fe (OH)_2 + Na_2S + S$

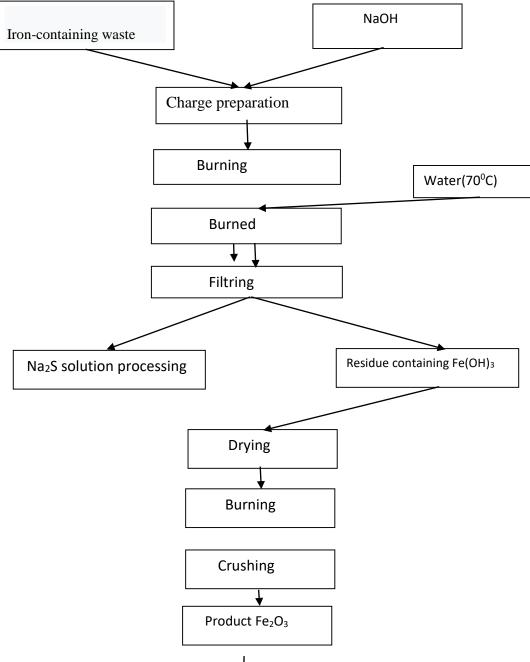
 $FeS + 2NaOH = Fe (OH)_2 + Na_2S$

 $SiO_2 + 2NaOH = Na_2SiO_3 + H2O$

based on the reactions, 80 g of NaOH was extracted and a charge was prepared. The muffle furnace was brought to a temperature of 100 °C and the samples were fired in hot-resistant crucibles at 350-400-450 °C for 40-50-60 minutes.

 $2Fe (OH)_2 + 1 / 2O2 = Fe_2O_3 + 2H_2O$

The burns were then cooled to room temperature. When the burns are dissolved in 300 ml of distilled water at 70 °C:


 $Fe_2O_3 + 3H_2O = 2Fe(OH)_3$

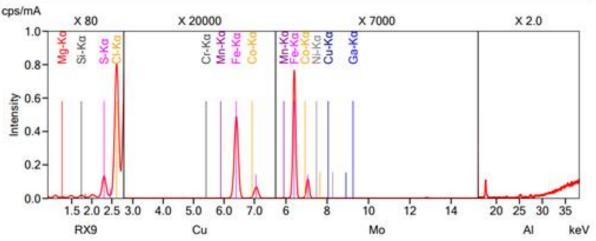
Iron (III) hydroxide was precipitated. Na₂S enters the solution. Then Fe(OH)₃ solution was passed through a filter paper. The solution passed through the filter paper is 128.32 g. Add the prepared solution to 64.16 g of dilute and concentrated sulfuric acid solution. when formed, silicate salts were formed.

YOSH TADQIQOTCHI JURNALI

Technological scheme of processing of iron-containing waste

The results of the analysis of the **o**btained samples. Picture 1.

Analyzed result


Sample	Information

Sample name	Fe2O3 Sirojiddin		
File name	Fe2O3 Sirojiddin		
Application	Umumiy.		
Date	2021/6/117:40		
Analyzed by			
Counts	1		
Comment			

Analyzed result(FP method, Scatter)

No.	Component	Result	Unit	Stat. Err.	LLD	LLQ	
1	CI	0.162	mass%	0.0005	0.0002	0.0007	
2	MgO	0.131	mass%	0.0103	0.0233	0.0699	
3	SiO2	0.0822	mass%	0.0018	0.0014	0.0043	
4	SO3	0.133	mass%	0.0011	0.0014	0.0042	
5	Cr2O3	0.0626	mass%	0.0021	0.0044	0.0133	
6	MnO	0.362	mass%	0.0046	0.0065	0.0195	
7	Fe2O3	95.6	mass%	0.0449	0.0024	0.0071	
8	Co2O3	0.179	mass%	0.0110	0.0355	0.107	
9	NiO	0.0163	mass%	0.0016	0.0033	0.0100	
10	CuO	0.0630	mass%	0.0020	0.0015	0.0044	
11	Ga2O3	0.0030	mass%	0.0004	0.0008	0.0024	

Figure 1 shows the results of the obtained pigment in the form of an oxide in an X-ray fluorescent spectrum analyzer.

Picture 2

Analyzed result

27 E	W 12	
Sample	Inton	mature
Sample	muon	наноя

Fe2O3 Sirojiddin
Fe2O3 Sirojiddin
Umumiy.
2021/6/117:40
1

Analyzed result(FP method, Scatter)

No.	Component	Result	Unit	Stat. Err.	LLD	LLQ	
1	CI	0.193	mass%	0.0006	0.0003	0.0008	
2	Mg	0.0932	mass%	0.0073	0.0166	0.0497	
3	Si	0.0456	mass%	0.0010	0.0008	0.0024	
4	S	0.0637	mass%	0.0005	0.0007	0.0020	
5	Cr	0.0524	mass%	0.0017	0.0037	0.0111	
6	Mn	0.342	mass%	0.0044	0.0061	0.0184	
7	Fe	81.8	mass%	0.0425	0.0020	0.0061	
8	Co	0.154	mass%	0.0095	0.0309	0.0927	
9	Ni	0.0154	mass%	0.0016	0.0034	0.0101	
10	Cu	0.0616	mass%	0.0019	0.0015	0.0044	
11	Ga	0.0027	mass%	0.0004	0.0007	0.0022	

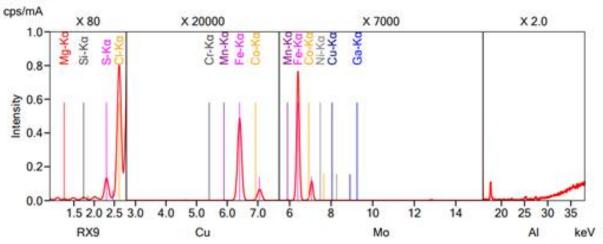


Figure 2 shows the results of the elemental composition of the obtained pigment in the X-ray fluorescent spectrum analyzer.

Picture 3

Analyzed result Sample Information Sirojiddin. FeSO4 Sample name File name Sirojiddin, FeSO4 Application Umumiy. Date 2021/11/3 11:21 Analyzed by Counts 1 Comment Analyzed result(FP method) No. Component Result Unit Stat. Err. LLD LLQ A1203 0.467 mass% 0.0150 0.0315 0.0944 1 SiO2 0.201 mass% 0.0060 0.0128 0.0384 2 3 SO3 38.8 mass% 0.0271 0.0004 0.0013 4 Cr2O3 (0.0061)mass% 0.0013 0.0038 0.0113 56 MnO 0.190 mass% 0.0031 0.0046 0.0139 Fe2O3 59.4 mass% 0.0417 0.0014 0.0042 7 Co2O3 0.129 mass% 0.0069 0.0202 0.0607 8 0.0009 0.0050 NiO 0.0114 mass% 0.0017 9 0.0012 0.0012 0.0035 CuO 0.0394 mass% 10 ZnO 0.117 mass% 0.0016 0.0006 0.0019 11 SrO 0.0022 mass% 0.0001 0.0002 0.0007 12 0.0046 ZrO2 0.635 mass% 0.0065 0.0015 13 Ag2O 0.0032 mass% 0.0005 0.0008 0.0023 14 0.0079 mass% 0.0008 0.0040 SnO2 0.0013 0.0021 15 0.0009 0.0062 TeO2 (0.0048) mass% 16 Ta2O5 (0.0078) mass% 0.0023 0.0065 0.0194 Spectrum cps/mA X 3000 X 6000 X 3000 X 2.0 1.0 2º Cr-Ka Mn-Ka Sr-Ka Ni-Ka Cu-Ka Zn-Ka 22 S-Ka Mn-K Ś 20 0.8-0.6-0.2-0.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0 10 12 14 20 25 30 35 6 8 RX9 Cu Mo AI keV

Figure 3 shows the oxide results of the iron sulphate obtained in the X-ray fluorescent spectrum analyzer.

Picture 4

YOSH TADQIQOTCHI JURNALI

Analyzed result

Sample Information

Sample name	Sirojiddin, FeSO4
File name	Sirojiddin, FeSO4
Application	Umumiy.
Date	2021/11/3 11:21
Analyzed by	
Counts	1
Comment	

Analyzed result(FP method)

No.	Component	Result	Unit	Stat. Err.	LLD	LLQ	
1	Al	0.366	mass%	0.0117	0.0246	0.0739	
2	Si	0.138	mass%	0.0042	0.0091	0.0273	
3	S	24.2	mass%	0.0184	0.0003	0.0008	
4	Cr	(0.0074)	mass%	0.0016	0.0045	0.0134	
5	Mn	0.254	mass%	0.0042	0.0062	0.0186	
6	Fe	73.6	mass%	0.0377	0.0017	0.0051	
7	Co	0.182	mass%	0.0088	0.0255	0.0766	
8	Ni	0.0178	mass%	0.0014	0.0026	0.0078	
9	Cu	0.0626	mass%	0.0018	0.0019	0.0056	
10	Zn	0.187	mass%	0.0025	0.0010	0.0030	
11	Sr	0.0037	mass%	0.0002	0.0004	0.0012	
12	Zr	0.937	mass%	0.0096	0.0023	0.0068	
13	Ag	0.0058	mass%	0.0009	0.0014	0.0043	
14	Sn	0.0123	mass%	0.0012	0.0021	0.0062	
15	Te	(0.0076)	mass%	0.0014	0.0032	0.0097	
16	Ta	(0.0128)	mass%	0.0037	0.0105	0.0316	

Spectrum

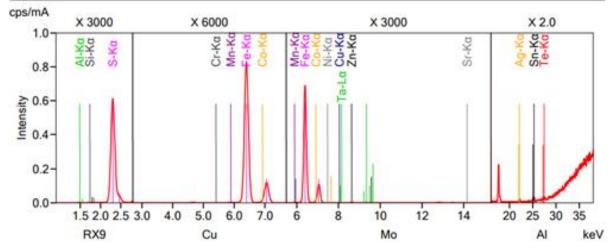


Figure 4 shows the results of the elemental composition of ferrous sulfate obtained in an X-ray luminescent spectrum analyzer.

Based on the experiments conducted, it can be said;

Uzbekistan has huge reserves of man-made waste containing iron and its compounds.

Demand for iron and its compounds is growing in our country.

If this technology is applied to industrial production, a significant part of these needs will be met.

The proposed technology does not require complexity and high cost.

The results of the analysis show that a high quality product can be obtained.

References:

- 1. <u>Получение на основе железного купороса ферроферриоксидов как магнитных</u> порошков
- 2. ЛС Ещенко, РА Воронцов, ИУ Рахманов 2020
- 3. <u>Получение сульфата калия на основе железного купороса</u>
- 4. ИУ Рахманов 2020
- 5. <u>Исследование состава и свойств промежуточных и конечных продуктов в системе</u> <u>FeSO [4]–H [2] SO [4]–KOH–H [2] O</u>
- 6. ИУ Рахманов, ВВ Климович, ДВ Гайдук 2020
- 7. <u>4. ПОЛУЧЕНИЕ СУЛЬФАТА НАТРИЯ И ЖЕЛЕЗООКСИДНОГО ПИГМЕНТА НА ОСНОВЕ ЖЕЛЕЗНОГО</u> <u>КУПОРОСА.</u>
- 8. <u>Рахманов И.У. Шаматов С.А. www.oriens.uz -2021</u>